Should concert halls use “assisted resonance”?

I read recently a very interesting article on the sonic deficiencies of some major classical concert halls and the possibility of using “assisted resonance” a.k.a. electronics and DSP to improve their reverberation characteristics.

It seems that there have been some expensive acoustic disasters over the years, where new concert halls have failed to live up to expectations. London’s Royal Festival Hall, which opened in 1951, is one of them, and it does seem a shame that a very expensive building designed and built purposely for music, has acoustics where performers apparently “lose the will to live”.

The science of concert hall acoustics has become better understood recently, but even if the hall works as predicted, there is no such thing as a one size fits all characteristic that is optimal for all types of speech and music. Even if there were, the number of people in the seats for a particular performance has a significant effect on the nature and length of reverberation. Starting from scratch, a good strategy might be to go all out for reverberation, with optimal dimensions and hard surfaces that could be covered with retractable curtains as required, but for many existing halls it is too late; they were built with the wrong materials and have the wrong dimensions, and it would be too costly to modify them.

And this is where electronics can supposedly come to the rescue. Microphones can be placed near to the stage and around the auditorium, and their output processed with DSP and fed to loudspeakers. Acoustically, the system can subjectively give the impression of changing the materials the hall is made of, or its dimensions. There are various commercial and experimental systems, and their use seems to be quite widespread.

Acoustic feedback from the speakers to the microphones is a factor that has to be managed, and is a limitation on the designers’ ability to create any response they desire (although modern DSP techniques reduce the feedback problem, but possibly with audible side effects). It was also the actual basis of one of the earliest attempts at electronic reverberation, known as “assisted resonance”, which was used in the Royal Festival Hall in the 1960s.

So reverberation enhancement ‘works’, but should it be used? Well, as a person who is pro the use of DSP in audio systems, I find myself unable to embrace it enthusiastically for classical concert halls, and I would much prefer to remain in ignorance if it is being used in any hall I might go to! I wonder how the majority of audiophiles would feel about it? Personally, I think I know too much about the reality of electronics and the people who inhabit that world! I don’t attribute the characteristics of art, craftsmanship, music and musicians to audio equipment. The reality is that audio equipment is created by technicians who are not steeped in art and have not served a musical craftsman’s apprenticeship. Do they have any business in a classical concert hall?

Electronic reverberation enhancement would no doubt be a mixture of approaches: custom design by computer programmers and acousticians in offices, and then physical construction of the system using standard microphones, amplifiers, DSP units, speaker drive units and custom MDF enclosures crammed into whatever corners and spaces of the hall that were convenient. Gaffa tape and the wearing of heavy metal T-shirts would be involved in the installation.

No one can say for sure what the ideal hall response should be, and even if they could it wouldn’t be achievable in every seat of the house. By definition we would be retro-fitting the system into an existing hall so would not have free rein to place speakers and microphones in all the optimal (if we even knew how to define optimal) locations. I have no doubt that, given a full 3D model of the auditorium, the acoustics with and without the electronic system could be simulated and plotted quite accurately, but this wouldn’t tell us the optimum settings for the system in order to maximise performance throughout the auditorium. If we felt able to specify criteria for “performance” then we could set a computer running with the task of finding the best compromise using simulated annealing or similar. We could go for best possible performance in the most expensive seats and not worry about everywhere else, or go for the best average performance throughout the auditorium, say. But notice what would have happened there. The future sound of classical music performances would have been set by:

  1. Arbitrary placement of transducers
  2. Sparse coverage of transducers
  3. Imperfect transducers
  4. An incomplete model of the auditorium and all possible configurations of stage, audience and placement of performers
  5. An incomplete simulation of the acoustics
  6. Arbitrary criteria for what makes ‘good’ acoustics
  7. Arbitrary criteria for distributing ‘good’ performance throughout the auditorium

You might say that something very similar would have occurred during the design of any modern acoustic-only concert hall: computer simulations and the setting of arbitrary criteria. But I would point out one crucial difference: a physical space and its acoustics form an entirely consistent system where the sound at any point is the sum of the direct sound and multiple delayed reflections. Even if the acoustics are not ideal they are consistent within themselves, and by moving throughout the space and sampling the response to impulses generated from known positions, multiple viable models could be constructed of the auditorium, which would gradually refine down to a single viable, consistent model. Electronically-generated acoustics cannot do this throughout the whole space. That is, they cannot be guaranteed to simulate a building that actually exists – certainly not at every position in the hall. Maybe the stationary human listener cannot hear the inconsistency, or maybe they can, but I don’t think it would be possible to guarantee a totally convincing effect at every point in the auditorium – unlike the case of an acoustic-only space no matter how flawed.

Other inconsistencies would include:

  • A ‘cognitive dissonance’ between the dimensions and materials of the hall and its sound (maybe it is obviously constructed from soft materials yet sounds like a stone church with different dimensions to the actual space)
  • A disconnect between the auditorium’s acoustic effect on sounds made by the audience itself (yes, coughing probably!) and its different apparent effect on the sounds made by the performers.

I realise that none of this may be the huge problem I am making it out to be. It’s just that I am wary of hype, and sceptical of the abilities of technicans! If a person who is adept at audio installation, mathematics or computer software tells me that they possess special powers enabling them to create the world’s finest concert hall acoustics with a few microphone capsules and polymer cones then I am not wholly convinced. Even if they are experts in their field (and this field could be very relevant like synthesising acoustics from first principles within 3D computer games) it does not automatically mean they can really do it.

The way I envisage the installation, technicians with laptops would pore over colourful charts on their screens, talking about “waterfall plots” and setting the system up to their own best guesses based on the methods they often use in sports stadiums, pop venues and shopping malls. Driving home at night they would be playing the latest Rihanna album on their car stereo, not Harrison Birtwistle; I would expect meaningful communication with the concert hall people to be limited simply because of the gulf of understanding between them.

In use it would become apparent that there were rough edges to the sound, but the concert hall people would be incapable of describing it in a way that could be understood by the technicians. Despite repeated attempts the sound would never be great. In short, the hall would become the offspring of two cultures that do not understand each other.

Over time the system would degrade. The microphones in very awkward-to-get-to places would gather thick layers of dust, changing their response. Occasionally, mysterious sounds caused by a spider living in one of the mics would be heard but never solved. Cables would be damaged by roofing contractors and repaired using Blu-tack and sellotape. Sonic anomalies like a metallic ringing particularly audible from rows C to E in the balcony would never quite be fixed. At some point the suppliers of the system would lose the original configuration files, making modifications impossible. Occasionally the system would pick up mobile phone interference. Yes, this is how I imagine such a system would be.

Would the system have fixed settings, or require a man at a mixing desk out in the auditorium to make proper adjustments for each performance just like a pop venue?

And then there are the ‘philosophical’ implications. I think that when we go to a concert we engage in some ‘suspension of disbelief’. Of course deep down we know that the hall is purposely-designed to sound good, and built for profit, and that the performers would rather be at home watching Game of Thrones that night. But we like to imagine that we have stumbled serendipitously upon a cultural happening with like-minded people in a magnificent hall built primarily as a gathering place, witnessing a group of performers doing what they do for the love of it. What happens there is spontaneous and not entirely predictable. Maybe the crowd will love the performance and the performers will feed off that reaction, or maybe they won’t. Maybe the organ will resonate in tune with the hall, or maybe because of atmospheric conditions and a particularly full house tonight it will be different and lend a new twist to the piece – without anyone analysing it of course.

Or at least that’s how I fondly imagine it. For me, electronic reverberation adds a new layer of ‘contrivance’. An analogy would be the use of electronics in a sports car to enhance the sound of the engine as heard by the driver (oh yes, they do that these days). There’s something not quite right about the direct, calculated, artificial ‘enhancement’ of something that is meant to be a fortunate by-product of something else. Even worse if it is created using technology in another ‘domain’ so that it is impossible to rationalise it as a “power valve” or whatever. Besides, it can never be perfect enhancement, for practical reasons such as that it is impossible for the car’s stereo speakers to create the low frequency vibrations that should accompany the harmonics we’re hearing. At some level, consciously or not, we may detect that the sound and physical sensations are not consistent with each other and decide that the whole thing is ‘fake’.

And then, if the performance is recorded there’s the idea that the recording I am listening to is a combination of real acoustics and some technician’s idea of good acoustics reproduced from imperfect speakers and then re-recorded by the mic! For better quality should the reverb instead be injected directly into the recording as a separate track? And maybe, just as we now recoil in horror at dated effects that were once thought to be timeless classics (e.g. gated reverb in the 1980s), will we only understand the true reality of having allowed young technicians to play with the hall’s acoustics when we listen to it again, decades later? Not a nice thought. But at least when the recording is re-mastered in years to come we can replace the reverb track, and its now-discredited algorithm, with the latest Steinberg Carnegie Hall impulse response – even though the performance was recorded in the Albert Hall.

As you can tell, I’m not keen.

UPDATE 20/06/15

Saw a link to a New Yorker article about someone’s experience with the Meyer Sound Constellation system. Reading it, I began to feel embarrassed: maybe my doubts about such systems are ill-founded, and in fact they are pretty much perfect. Maybe there really is a technical wizard who understands precisely how to solve this problem.

He clapped his hands; the sound resonated handsomely. Then he signalled for the power to be turned off. Suddenly, the clap was clipped and lifeless. The crowd gasped and applauded…

…it demonstrated the Meyers’ ability to conjure a plausible performance space. I was particularly struck by the sound of the tenor Nicholas Phan, in the Britten; the singer’s tensile strength and tonal colors came through intact. “It feels like a completely natural and real acoustic,” Phan told me afterward. “It even changes and feels different depending upon how full the audience is.”

But at the end, the author confirms what I might have expected:

All the same, I was never entirely convinced by the string timbre, especially the cellos and the double-basses. At full force, they had a slightly puffy, plastic quality—a familiar handicap of amplification that Meyer technicians haven’t yet overcome.

There is something philosophically disquieting about the Meyers’ work, as there is in any digital makeover of reality. Both at Oliveto and at SoundBox, the Constellation process never seemed obviously fake or too good to be true, and yet I had a sense of being ensconced in an audio cocoon. In the concert setting, I missed the thrum of floorboards under my feet—the full physical tingle of reverberation. Traditionalists will insist that there is no substitute for a first-class hall, and they will be right.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s