Room correction. What are we trying to achieve?

The short version…

The recent availability of DSP is leading some people to assume that speakers are, and have always been, ‘wrong’ unless EQ’ed to invert the room’s acoustics.

In fact, our audio ancestors didn’t get it wrong. Only a neutral speaker is ‘right’, and the acoustics of an average room are an enhancement to the sound. If we don’t like the sound of the room, we must change the room – not the sound from the speaker.

DSP gives us the tools to build a more neutral speaker than ever before.


There are endless discussions about room correction, and many different commercial products and methods. Some people seem to like certain results while others find them a little strange-sounding.

I am not actually sure what it is that people are trying to achieve. I can’t help but think that if someone feels the need for room correction, they have yet to hear a system that sounds so good that they wouldn’t dream of messing it up with another layer of their own ‘EQ’.

Another possibility is that they are making an unwarranted assumption based on the fact that there are large objective differences between the recorded waveform and what reaches the listener’s ears in a real room. That must mean that no matter how good it sounds, there’s an error. It could sound even better, right?

No.

A reviewer of the Kii Three found that that particularly neutral speaker sounded perfect straight out of the box.

“…the traditional kind of subjective analysis we speaker reviewers default to — describing the tonal balance and making a judgement about the competence of a monitor’s basic frequency response — is somehow rendered a little pointless with the Kii Three. It sounds so transparent and creates such fundamentally believable audio that thoughts of ‘dull’ or ‘bright’ seem somehow superfluous.”

The Kii Three does, however, offer a number of preset “contour” EQ options. As I shall describe later, I think that a variation on this is all that is required to refine the sound of any well-designed neutral speaker in most rooms.

A distinction is often made between correction of the bass and higher frequencies. If the room is large, and furnished copiously, there may be no problem to solve in either case, and this is the ideal situation. But some bass manipulation may be needed in many rooms. At a minimum, the person with sealed woofers needs the roll-off at the bottom end to start at about the right frequency for the room. This, in itself, is a form of ‘room correction’.

The controversial aspect is the question of whether we need ‘correction’ higher up. Should it be applied routinely (some people think so), as sparingly as possible, or not at all? And if people do hear an improvement, is that because the system is inherently correcting less-than-ideal speakers rather than the room?

Here are some ways of looking at the issue.

  1. Single room reflections give us echoes, while multiple reflections (of reflections) give us reverberation. Performing a frequency response measurement with a neutral transducer and analysing the result may show a non-flat FR at the listening position even when smoothed fairly heavily. This is just an aspect of statistics, and of the geometry and absorptivity of the various surfaces in the room. Some reflections will result in some frequencies summing in phase, to some extent, and others not.
  2. Experience tells us that we “hear through” the room to any acoustic source. Our hearing appears not to be just a frequency response analyser, but can separate direct sound from reflections. This is not a fanciful idea: adaptive software can learn to do the same thing.

The idea is also supported by some of the great and the good in audio.

Floyd Toole:

“…we humans manage to compensate for many of the temporal and timbral variations contributed by rooms and hear “through” them to appreciate certain essential qualities of sound sources within these spaces.”

Or Meridian’s Bob Stuart:

“Our brains are able to separate direct sound from the reverberation…”

  1. If we EQ the FR of the speaker to obtain a flat in-room measured response including the reflections in the measurement, it seems that we will subsequently “hear through” the reflections to a strangely-EQ’ed direct sound. It will, nevertheless measure ‘perfectly’.
  2. Audio orthodoxy maintains that humans are supremely insensitive to phase distortion, and this is often compounded with the argument that room reflections completely swamp phase information so it is not worth worrying about. This denies the possibility that we “hear through” the room. Listening tests in the past that purportedly demonstrated our inability to hear the effects of phase have often been based on mono only, and didn’t compare distorted with undistorted phase examples – merely distorted versus differently distorted, played on the then available equipment.
  3. Contradicting (4), audiophiles traditionally fear crossovers because the phase shifts inherent in (non-DSP) crossovers are, they say, always audible. DSP, on the other hand, allows us to create crossovers without any phase shift i.e. they are ‘transparent’.
  4. At a minimum, speaker drivers on their baffles should not ‘fight’ each other through the crossover – their phases should be aligned. The appropriate delays then ensure that they are not ‘fighting’ at the listener’s position. The next level in performance is to ensure that their phases are flat at all frequencies i.e. linear phase. The result of this is the recorded waveform preserved in both frequency and time.
  5. Intuitively, genuine stereo imaging is likely to be a function of phase and timing. Preserving that phase and timing should probably be something we logically try to do. We could ‘second guess’ how it works using traditional rules of thumb, deciding not to preserve the phase and timing, but if it is effectively cost-free to do it, why not do it anyway?
  6. A ‘perfect’ response from many speaker/room combinations can be guaranteed using DSP (deconvolution with the impulse response at that point, not just playing with a graphic equaliser). Unfortunately, it will only be valid for a single point in space, and moving 1mm from there will produce errors and unquantifiable sonic effects. Additionally, ‘perfect’ refers to the ‘anechoic chamber’ version of the recording, which may not be what most people are trying to achieve even if the measurements they think they seek mean precisely that.
  7. Room effects such as (moderate) reverberation are a major difference between listening with speakers versus headphones, and are actually desirable. ‘Room correction’ would be a bad thing if it literally removed the room from the sound. If that is the case, what exactly do we think ‘room correction’ is for?
  8. Even if the drivers are neutral (in an anechoic situation) and crossed over perfectly on axis, they are of finite size and mounted in a box or on a baffle that has a physical size and shape. This produces certain frequency-dependent dispersion characteristics which give different measured, and subjective, results in different rooms. Some questions are:
    • is this dispersion characteristic a ‘room effect’ or a ‘speaker effect’. Or both?
    • is there a simple objective measurement that says one result is better than any other?
    • is there just one ‘right’ result and all others are ‘wrong’?
  1. Should room correction attempt to correct the speaker as well? Or should we, in fact, only correct the speaker? Or just the room? If so, how would we separate room from speaker in our measurements? Can they, in fact, be separated?

I think there is a formula that gives good results. It says:

  • Don’t rely on feedback from in-room measurements, but do ‘neutralise’ the speaker at the most elemental levels first. At every stage, go for the most neutral (and locally correctable) option e.g. sealed woofers, DSP-based linear phase crossovers with time alignment delays.
  • Simply avoid configurations that are going to give inherently weird results: two-way speakers, bass reflex, many types of passive crossover etc. These may not even be partially correctable in any meaningful way.
  • Phase and time alignment are sacrosanct. This is the secret ingredient. You can play with minor changes to the ‘tone colour’ separately, but your direct sound must always maintain the recording’s phase and time alignment. This implies that FIR filters must be used, thus allowing frequency response to be modified independently of phase.
  • By all means do all the good stuff regarding speaker placement, room treatments (the room is always ‘valid’), and avoiding objects and asymmetry around the speakers themselves.
  • Notionally, I propose that we wish to correct the speaker not the room. However, we are faced with a room and non-neutral speaker that are intertwined due to the fact that the speaker has multiple drivers of finite size and a physical presence (as opposed to being a point source with uniform directivity at all frequencies). The artefacts resulting from this are room-dependent and can never really be ‘corrected’ unambiguously. Luckily, a smooth EQ curve can make the sound subjectively near enough to transparent. To obtain this curve, predict the baffle step correction for each driver using modelling or standard formula with some some trial-and-error regarding the depth required (4, 5, 6 dB?); this is a very smooth EQ curve. Or, possibly (I haven’t done this myself), make many FR measurements around the listening area, smooth and average them together, and partially invert this, again without altering phase and time alignment.
  • You are hearing the direct sound, plus separately-perceived ‘room ambience’. If you don’t like the sound of the ambience, you must change the room, not the direct sound.

Is there any scientific evidence for these assertions? No more nor less than any other ‘room correction’ technique – just logical deduction based on subjective experience. Really, it is just a case of thinking about what we hear as we move around and between rooms, compared to what the simple in-room FR measurements show. Why do real musicians not need ‘correction’ when they play in different venues? Do we really want ‘headphone sound’ when listening in rooms? (If so, just wear headphones or sit closer to smaller speakers).

This does not say that neutral drivers alone are sufficient to guarantee good sound – I have observed that this is not the case. A simple baffle step correction applied to frequency response (but leaving phase and timing intact) can greatly improve the sound of a real loudspeaker in a room without affecting how sharply-imaged and dynamic it sounds. I surmise that frequency response can be regarded as ‘colour’ (or “chrominance” in old school video speak), independent of the ‘detail’ (or “luminance”) of phase and timing. We can work towards a frequency response that compensates for the combination of room and speaker dispersion effects to give the right subjective ‘colour’ as long as we maintain accurate phase and timing of the direct sound.

We are not (necessarily) trying to flatten the in-room FR as measured at the listener’s position – the EQ we apply is very smooth and shallow – but the result will still be perceived as a flat FR. Many (most?) existing speakers inherently have this EQ built in whether their creators applied it deliberately, or via the ‘voicing’ they did when setting the speaker up for use in an average room.

In conclusion, the summary is this:

  • Humans “hear through” the room to the direct sound; the room is perceived as a separate ‘ambience’. Because of this, ‘no correction’ really is the correct strategy.
  • Simply flattening the FR at the listening position via EQ of the speaker output is likely to result in ‘peculiar’ perceived sound, even if the in-room measurements purport to say otherwise.
  • Speakers have to be as rigorously neutral as possible by design, rather than attempting to correct them by ‘global feedback’ in the room.
  • Final refinement is a speaker/room-dependent, smooth, shallow EQ curve that doesn’t touch phase and timing – only FIR filters can do this.

[Last updated 05/04/17]

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s